

Welcome to flake8-nb’s documentation!

Contents:

	flake8-nb
	Features

	Examples

	Default reporting

	Custom reporting

	Similar projects

	Contributors ✨

	Installation
	Stable release

	From sources

	Usage
	Command line usage

	Project wide configuration

	Per cell/line configuration

	As pre-commit hook

	Examples
	This notebook demonstrates flake8_nb reporting

	This notebook demonstrates flake8_nb reporting with flake8-tags

	Inner workings
	flake8_nb

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits

	Changelog
	0.5.3 (2023-03-28)

	0.5.2 (2022-08-17)

	0.5.1 (2022-08-16)

	0.5.0 (2022-08-15)

	0.4.0 (2022-02-21)

	0.3.1 (2021-10-19)

	0.3.0 (2020-05-16)

	0.2.7 (2020-04-16)

	0.2.6 (2020-03-21)

	0.2.5 (2020-10-06)

	0.2.4 (2020-10-04)

	0.2.3 (2020-10-02)

	0.2.1 (2020-08-11)

	0.2.0 (2020-07-18)

	0.1.8 (2020-06-09)

	0.1.7 (2020-05-25)

	0.1.6 (2020-05-20)

	0.1.4 (2020-01-01)

	0.1.3 (2019-11-13)

	0.1.2 (2019-10-29)

	0.1.1 (2019-10-24)

	0.1.0 (2019-10-22)

Indices and tables

	Index

	Module Index

	Search Page

flake8-nb

[image: PyPi Version] [https://pypi.org/project/flake8-nb/]
[image: Conda Version] [https://anaconda.org/conda-forge/flake8-nb]
[image: Supported Python Versions] [https://pypi.org/project/flake8-nb/]
[image: Pre-commit] [https://github.com/pre-commit/pre-commit]
[image: License] [https://opensource.org/licenses/Apache-2.0]

[image: Actions Status] [https://github.com/s-weigand/flake8-nb/actions]
[image: Documentation Status] [https://flake8-nb.readthedocs.io/en/latest/?badge=latest]
[image: Testing Coverage] [https://codecov.io/gh/s-weigand/flake8-nb]
[image: Documentation Coverage] [https://github.com/s-weigand/flake8-nb]

[image: Codacy Badge] [https://www.codacy.com/gh/s-weigand/flake8-nb/dashboard?utm_source=github.com&utm_medium=referral&utm_content=s-weigand/flake8-nb&utm_campaign=Badge_Grade]
[image: All Contributors]
[image: Code style Python: black] [https://github.com/psf/black]
[image: Binder] [https://mybinder.org/v2/gh/s-weigand/flake8-nb.git/main?urlpath=lab%2Ftree%2Ftests%2Fdata%2Fnotebooks]

flake8 [https://github.com/pycqa/flake8] checking for jupyter notebooks.

This tool is mainly aimed towards writing tutorials/lecture material, where one might also want
to show off bad practices and/or errors, while still keeping the rest of the code clean and
without adding the complexity of tooling to the readers
(see docs on cell tags [https://flake8-nb.readthedocs.io/en/latest/usage.html#cell-tags]).

Basically this is a hack on the flake8’s Application class,
which adds parsing and a cell based formatter for *.ipynb files.

This is NOT A PLUGIN but a stand alone CLI tool/pre-commit [https://pre-commit.com/] hook to be used instead of the flake8 command/hook.

Features

	flake8 CLI tests for jupyter notebooks

	Full base functionality of flake8 and its plugins

	Input cell based error formatting (Execution count/code cell count/total cellcount)

	Report fine tuning with cell-tags (flake8-noqa-tags see usage [https://flake8-nb.readthedocs.io/en/latest/usage.html#cell-tags])

	pre-commit [https://pre-commit.com/] hook

Examples

Default reporting

If you had a notebook with name example_notebook.ipynb, where the code cell
which was executed as 34th cell (In[34]) had the following code:

bad_formatted_dict = {"missing":"space"}

running flake8_nb would result in the following output.

Execution count

$ flake8_nb example_notebook.ipynb
example_notebook.ipynb#In[34]:1:31: E231 missing whitespace after ':'

Custom reporting

If you prefer the reports to show the cell number rather then the execution count you
can use the --notebook-cell-format option, given that the cell is the 5th code cell
and 10th total cell (taking raw and markdown cells into account),
you will get the following output.

Code cell count

$ flake8_nb --notebook-cell-format '{nb_path}:code_cell#{code_cell_count}' example_notebook.ipynb
example_notebook.ipynb:code_cell#5:1:31: E231 missing whitespace after ':'

Total cell count

$ flake8_nb --notebook-cell-format '{nb_path}:cell#{total_cell_count}' example_notebook.ipynb
example_notebook.ipynb:cell#10:1:31: E231 missing whitespace after ':'

Similar projects

	nbQA [https://github.com/nbQA-dev/nbQA]:
Run isort, pyupgrade, mypy, pylint, flake8, mdformat, black, blacken-docs, and more on Jupyter Notebooks

Contributors ✨

Thanks goes to these wonderful people (emoji key [https://allcontributors.org/docs/en/emoji-key]):

 	[image: Sebastian Weigand]
Sebastian Weigand
💻

 Installation

Installation

Stable release

To install flake8-nb, run this command in your terminal:

$ pip install flake8-nb

This is the preferred method to install flake8-nb, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io/en/stable/] installed, this Python installation guide [https://docs.python-guide.org/starting/installation/] can guide
you through the process.

From sources

You can either pip install it directly from github:

$ pip install git+git://github.com/s-weigand/flake8-nb@<branch_name>

Or get the sources for flake8-nb, which can be downloaded from the Github repo [https://github.com/s-weigand/flake8-nb].

By cloning the public repository:

$ git clone git://github.com/s-weigand/flake8-nb

Or downloading the tarball [https://github.com/s-weigand/flake8-nb/tarball/main]:

$ curl -OJL https://github.com/s-weigand/flake8-nb/tarball/main

Once you have a copy of the source, you can install it with:

$ python setup.py install

 Usage

Usage

Since flake8_nb is basically a hacked version of
flake8 its usage is identically.
The only key difference is the appended _nb is the commands and
configurations name.

Command line usage

The basic usage is to call flake8_nb with the files/paths,
which should be checked as arguments (see flake8 invocation [https://flake8.pycqa.org/en/latest/user/invocation.html]).

$ flake8_nb path-to-notebooks-or-folder

To customize the behavior you can use the many options provided
by flake8’s CLI. To see all the provided option just call:

$ flake8_nb --help

Additional flags/options provided by flake8_nb:

	
	--keep-parsed-notebooks
	If this flag is activated the the parsed notebooks will be kept
and the path they were saved in will be displayed, for further
debugging or trouble shooting.

	
	--notebook-cell-format
	Template string used to format the filename and cell part of error report.
Possible variables which will be replaced are nb_path, exec_count,
code_cell_count and total_cell_count.

Project wide configuration

Configuration of a project can be saved in one of the following files
setup.cfg, tox.ini or .flake8_nb, on the top level of your project
(see flake8 configuration [https://flake8.pycqa.org/en/latest/user/configuration.html]).

[flake8_nb]
; Default values
keep_parsed_notebooks = False
notebook_cell_format = {nb_path}#In[{exec_count}]

For a detailed explanation on how to use and configure it,
you can consult the official flake8 documentation [https://flake8.pycqa.org/en/latest/index.html]

Per cell/line configuration

There are multiple ways to fine grade configure flake8_nb
on a line or cell basis.

flake8 noqa comments

The most intuitive way for experienced flake8 users is
to utilize the known flake8 noqa [https://flake8.pycqa.org/en/latest/user/violations.html#in-line-ignoring-errors] comment on a line, to ignore specific
or all errors, flake8 would report on that given line.

Note

If a normal flake8 noqa comment ends with a string, which doesn’t
match the error code pattern (\w+\d+), this comment will be ignored.

Cell tags

Cell tags are meta information, which can be added to cells,
to augment their behavior (for jupyterlab<2.0, you will need to install jupyterlab-celltags [https://github.com/jupyterlab/jupyterlab-celltags]).
Depending on the editor you use for the notebook, they aren’t
directly visible, which is a nice way to hide certain internals
which aren’t important for the user/reader.
For example if write a book like notebook and want to demonstrate
some bad code examples an still pass your flake8_nb tests you
can use flake8-noqa-tags.
Or if you want to demonstrate a raised exception and still want
then whole notebook to be executed when you run all cells, you
can use the raises-exception tag.

The patterns for flake8-noqa-tags are the following:

	
	flake8-noqa-cell
	ignores all reports from a cell

	
	flake8-noqa-cell-<rule1>-<rule2>
	ignores given rules for the cell
i.e. flake8-noqa-cell-F401-F811

	
	flake8-noqa-line-<line_nr>
	ignores all reports from a given line in a cell,
i.e. flake8-noqa-line-1

	
	flake8-noqa-line-<line_nr>-<rule1>-<rule2>
	ignores given rules from a given line for the cell
i.e. flake8-noqa-line-1-F401-F811

Inline cell tags

If you want your users/reader to directly see which flake8 rules
are ignored, you can also use the flake8-noqa-tag pattern as
comment in a cell.

Note

If you use jupyter magic to run code other than Python (i.e. %%bash)
you should ignore the whole cell with flake8-noqa-cell.

As pre-commit hook

Add the following to your .pre-commit-config.yaml file:

- repo: https://github.com/s-weigand/flake8-nb
 rev: 0.5.3 # specify version here
 hooks:
 - id: flake8-nb

See pre-commit docs [https://pre-commit.com/] for more on pre-commit.

 Examples

Examples

	This notebook demonstrates flake8_nb reporting
	Report using execution count

	Report using code cell count

	Report using total cell count

	This notebook demonstrates flake8_nb reporting with flake8-tags
	Testing Celltags

	Testing inline Celltags

	Testing normal flake8 noqa comments

	Report using execution count

	Report using code cell count

	Report using total cell count

 This notebook demonstrates flake8_nb reporting

This page was generated from tests/data/notebooks/notebook_with_out_flake8_tags.ipynb [https://github.com/s-weigand/flake8-nb/blob/main/tests/data/notebooks/notebook_with_out_flake8_tags.ipynb].
Interactive online version:
[image: Binder badge]

 This notebook demonstrates flake8_nb reporting with flake8-tags

This page was generated from tests/data/notebooks/notebook_with_flake8_tags.ipynb [https://github.com/s-weigand/flake8-nb/blob/main/tests/data/notebooks/notebook_with_flake8_tags.ipynb].
Interactive online version:
[image: Binder badge]

 Inner workings

Inner workings

This is the detailed documentation of the inner workings of flake8_nb.

	flake8_nb

	Top-level package for flake8-nb.

 flake8_nb

flake8_nb

Top-level package for flake8-nb.

Modules

	flake8_nb.flake8_integration

	Package containing code to integrate the parserers and hacking flake8.

	flake8_nb.parsers

	Package responsible for transforming notebooks to valid python files.

Functions

Summary

	save_cast_int

	Cast version string to tuple, in a save manner.

 flake8_integration

flake8_integration

Package containing code to integrate the parserers and hacking flake8.

Modules

	flake8_nb.flake8_integration.cli

	Module containing the notebook gatherer and hack of flake8.

	flake8_nb.flake8_integration.formatter

	Module containing the report formatter.

 cli

cli

Module containing the notebook gatherer and hack of flake8.

This is the main implementation of flake8_nb, it relies on
overwriting flake8 ‘s CLI default options, searching and parsing
*.ipynb files and injecting the parsed files, during the loading
of the CLI argv and config of flake8.

Functions

Summary

	get_notebooks_from_args

	Extract the absolute paths to notebooks.

	hack_config_module

	Create hacked version of flake8.options.config at runtime.

	hack_option_manager_generate_versions

	Closure to prepend the flake8 version to option_manager.generate_versions .

Classes

Summary

	Flake8NbApplication

	Subclass of flake8.main.application.Application.

 get_notebooks_from_args

get_notebooks_from_args

	
get_notebooks_from_args(args: list[str], exclude: list[str] = ['*.tox/*', '*.ipynb_checkpoints*']) → tuple[list[str], list[str]]

	Extract the absolute paths to notebooks.

The paths are relative to the current directory or
to the CLI passes files/folder and returned as list.

	Parameters:

	
	args (list[str]) – The left over arguments that were not parsed by option_manager

	exclude (list[str]) – File-/Folderpatterns that should be excluded,
by default [”.tox/”, “.ipynb_checkpoints”]

	Returns:

	List of found notebooks absolute paths.

	Return type:

	tuple[list[str], list[str]]

 hack_config_module

hack_config_module

	
hack_config_module() → None

	Create hacked version of flake8.options.config at runtime.

Since flake8>=5.0.0 uses hardcoded "flake8" to discover the config we replace
with it with "flake8_nb" to create our own hacked version and replace
the references to the original module with the hacked one.

	See:
	https://github.com/s-weigand/flake8-nb/issues/249
https://github.com/s-weigand/flake8-nb/issues/254

 hack_option_manager_generate_versions

hack_option_manager_generate_versions

	
hack_option_manager_generate_versions(generate_versions: Callable[[...], str]) → Callable[[...], str]

	Closure to prepend the flake8 version to option_manager.generate_versions .

	Parameters:

	generate_versions (Callable[..., str]) – option_manager.generate_versions of flake8.options.manager.OptionManager

	Returns:

	hacked_generate_versions

	Return type:

	Callable[…, str]

 Flake8NbApplication

Flake8NbApplication

	
class Flake8NbApplication(program: str = 'flake8_nb', version: str = '0.5.3')

	Subclass of flake8.main.application.Application.

It overwrites the default options and an injection of intermediate parsed
*.ipynb files to be checked.

Hacked initialization of flake8.Application.

	Parameters:

	
	program (str) – Application name, by default “flake8_nb”

	version (str) – Application version, by default __version__

Attributes Summary

	formatter

	Generic output formatting.

Methods Summary

	apply_hacks

	Apply hacks to flake8 adding options and changing the application name + version.

	exit

	Handle finalization and exiting the program.

	exit_code

	Return the program exit code.

	find_plugins

	Find and load the plugins for this application.

	hack_args

	Update args with *.ipynb files.

	hack_flake8_program_and_version

	Hack to overwrite the program name and version of flake8.

	hack_options

	Overwrite flake8's default options, with flake8_nb defaults.

	hacked_register_plugin_options

	Register options provided by plugins to our option manager.

	initialize

	Initialize the application to be run.

	make_file_checker_manager

	Initialize our FileChecker Manager.

	make_formatter

	Initialize a formatter based on the parsed options.

	make_guide

	Initialize our StyleGuide.

	parse_configuration_and_cli

	Parse configuration files and the CLI options.

	parse_configuration_and_cli_legacy

	Parse configuration files and the CLI options.

	parse_preliminary_options

	Get preliminary options from the CLI, pre-plugin-loading.

	register_plugin_options

	Register options provided by plugins to our option manager.

	report

	Report errors, statistics, and benchmarks.

	report_benchmarks

	Aggregate, calculate, and report benchmarks for this run.

	report_errors

	Report all the errors found by flake8 3.0.

	report_statistics

	Aggregate and report statistics from this run.

	run

	Run our application.

	run_checks

	Run the actual checks with the FileChecker Manager.

	set_flake8_option

	Overwrite flake8 options.

Methods Documentation

	
apply_hacks() → None

	Apply hacks to flake8 adding options and changing the application name + version.

	
exit() → None

	Handle finalization and exiting the program.

This should be the last thing called on the application instance. It
will check certain options and exit appropriately.

	Raises:

	SystemExit – For flake8>=5.0.0

	
exit_code() → int

	Return the program exit code.

	
find_plugins(cfg: RawConfigParser, cfg_dir: str, *, enable_extensions: str | None, require_plugins: str | None) → None

	Find and load the plugins for this application.

Set plugins based on loaded plugins.

	
static hack_args(args: list[str], exclude: list[str]) → list[str]

	Update args with *.ipynb files.

Checks the passed args if *.ipynb can be found and
appends intermediate parsed files to the list of files,
which should be checked.

	Parameters:

	
	args (list[str]) – List of commandline arguments provided to flake8_nb

	exclude (list[str]) – File-/Folderpatterns that should be excluded

	Returns:

	The original args + intermediate parsed *.ipynb files.

	Return type:

	list[str]

	
hack_flake8_program_and_version(program: str, version: str) → None

	Hack to overwrite the program name and version of flake8.

This is needed because those values are hard coded at creation of self.option_manager.

	Parameters:

	
	program (str) – Name of the program

	version (str) – Version of the program

	
hack_options() → None

	Overwrite flake8’s default options, with flake8_nb defaults.

	
hacked_register_plugin_options() → None

	Register options provided by plugins to our option manager.

	
initialize(argv: Sequence[str]) → None

	Initialize the application to be run.

This finds the plugins, registers their options, and parses the
command-line arguments.

	
make_file_checker_manager() → None

	Initialize our FileChecker Manager.

	
make_formatter() → None

	Initialize a formatter based on the parsed options.

	
make_guide() → None

	Initialize our StyleGuide.

	
parse_configuration_and_cli(cfg: configparser.RawConfigParser, cfg_dir: str, argv: list[str]) → None

	Parse configuration files and the CLI options.

	Parameters:

	
	cfg (configparser.RawConfigParser) – Config parser instance

	cfg_dir (str) – Dir the the config is in.

	argv (list[str]) – CLI args

	Raises:

	SystemExit – If --bug-report option is passed to the CLI.

	
parse_configuration_and_cli_legacy(config_finder: config.ConfigFileFinder, argv: list[str]) → None

	Parse configuration files and the CLI options.

	Parameters:

	
	config_finder (config.ConfigFileFinder) – The finder for finding and reading configuration files.

	argv (list[str]) – Command-line arguments passed in directly.

	
parse_preliminary_options(argv: Sequence[str]) → Tuple[Namespace, List[str]]

	Get preliminary options from the CLI, pre-plugin-loading.

We need to know the values of a few standard options so that we can
locate configuration files and configure logging.

Since plugins aren’t loaded yet, there may be some as-yet-unknown
options; we ignore those for now, they’ll be parsed later when we do
real option parsing.

	Parameters:

	argv – Command-line arguments passed in directly.

	Returns:

	Populated namespace and list of remaining argument strings.

	
register_plugin_options() → None

	Register options provided by plugins to our option manager.

	
report() → None

	Report errors, statistics, and benchmarks.

	
report_benchmarks() → None

	Aggregate, calculate, and report benchmarks for this run.

	
report_errors() → None

	Report all the errors found by flake8 3.0.

This also updates the result_count attribute with the total
number of errors, warnings, and other messages found.

	
report_statistics() → None

	Aggregate and report statistics from this run.

	
run(argv: Sequence[str]) → None

	Run our application.

This method will also handle KeyboardInterrupt exceptions for the
entirety of the flake8 application. If it sees a KeyboardInterrupt it
will forcibly clean up the Manager.

	
run_checks() → None

	Run the actual checks with the FileChecker Manager.

This method encapsulates the logic to make a
Manger instance run the checks it is
managing.

	
set_flake8_option(long_option_name: str, *args: Any, **kwargs: Any) → None

	Overwrite flake8 options.

First deletes and than reads an option to flake8’s cli options, if it was present.
If the option wasn’t present, it just adds it.

	Parameters:

	
	long_option_name (str) – Long name of the flake8 cli option.

	args (Tuple[Any]) – Arbitrary args

	kwargs (Dict[str, Any]) – Arbitrary kwargs

 apply_hacks

apply_hacks

	
Flake8NbApplication.apply_hacks() → None

	Apply hacks to flake8 adding options and changing the application name + version.

 exit

exit

	
Flake8NbApplication.exit() → None

	Handle finalization and exiting the program.

This should be the last thing called on the application instance. It
will check certain options and exit appropriately.

	Raises:

	SystemExit – For flake8>=5.0.0

 exit_code

exit_code

	
Flake8NbApplication.exit_code() → int

	Return the program exit code.

 find_plugins

find_plugins

	
Flake8NbApplication.find_plugins(cfg: RawConfigParser, cfg_dir: str, *, enable_extensions: str | None, require_plugins: str | None) → None

	Find and load the plugins for this application.

Set plugins based on loaded plugins.

 hack_args

hack_args

	
static Flake8NbApplication.hack_args(args: list[str], exclude: list[str]) → list[str]

	Update args with *.ipynb files.

Checks the passed args if *.ipynb can be found and
appends intermediate parsed files to the list of files,
which should be checked.

	Parameters:

	
	args (list[str]) – List of commandline arguments provided to flake8_nb

	exclude (list[str]) – File-/Folderpatterns that should be excluded

	Returns:

	The original args + intermediate parsed *.ipynb files.

	Return type:

	list[str]

 hack_flake8_program_and_version

hack_flake8_program_and_version

	
Flake8NbApplication.hack_flake8_program_and_version(program: str, version: str) → None

	Hack to overwrite the program name and version of flake8.

This is needed because those values are hard coded at creation of self.option_manager.

	Parameters:

	
	program (str) – Name of the program

	version (str) – Version of the program

 hack_options

hack_options

	
Flake8NbApplication.hack_options() → None

	Overwrite flake8’s default options, with flake8_nb defaults.

 hacked_register_plugin_options

hacked_register_plugin_options

	
Flake8NbApplication.hacked_register_plugin_options() → None

	Register options provided by plugins to our option manager.

 initialize

initialize

	
Flake8NbApplication.initialize(argv: Sequence[str]) → None

	Initialize the application to be run.

This finds the plugins, registers their options, and parses the
command-line arguments.

 make_file_checker_manager

make_file_checker_manager

	
Flake8NbApplication.make_file_checker_manager() → None

	Initialize our FileChecker Manager.

 make_formatter

make_formatter

	
Flake8NbApplication.make_formatter() → None

	Initialize a formatter based on the parsed options.

 make_guide

make_guide

	
Flake8NbApplication.make_guide() → None

	Initialize our StyleGuide.

 parse_configuration_and_cli

parse_configuration_and_cli

	
Flake8NbApplication.parse_configuration_and_cli(cfg: configparser.RawConfigParser, cfg_dir: str, argv: list[str]) → None

	Parse configuration files and the CLI options.

	Parameters:

	
	cfg (configparser.RawConfigParser) – Config parser instance

	cfg_dir (str) – Dir the the config is in.

	argv (list[str]) – CLI args

	Raises:

	SystemExit – If --bug-report option is passed to the CLI.

 parse_configuration_and_cli_legacy

parse_configuration_and_cli_legacy

	
Flake8NbApplication.parse_configuration_and_cli_legacy(config_finder: config.ConfigFileFinder, argv: list[str]) → None

	Parse configuration files and the CLI options.

	Parameters:

	
	config_finder (config.ConfigFileFinder) – The finder for finding and reading configuration files.

	argv (list[str]) – Command-line arguments passed in directly.

 parse_preliminary_options

parse_preliminary_options

	
Flake8NbApplication.parse_preliminary_options(argv: Sequence[str]) → Tuple[Namespace, List[str]]

	Get preliminary options from the CLI, pre-plugin-loading.

We need to know the values of a few standard options so that we can
locate configuration files and configure logging.

Since plugins aren’t loaded yet, there may be some as-yet-unknown
options; we ignore those for now, they’ll be parsed later when we do
real option parsing.

	Parameters:

	argv – Command-line arguments passed in directly.

	Returns:

	Populated namespace and list of remaining argument strings.

 register_plugin_options

register_plugin_options

	
Flake8NbApplication.register_plugin_options() → None

	Register options provided by plugins to our option manager.

 report

report

	
Flake8NbApplication.report() → None

	Report errors, statistics, and benchmarks.

 report_benchmarks

report_benchmarks

	
Flake8NbApplication.report_benchmarks() → None

	Aggregate, calculate, and report benchmarks for this run.

 report_errors

report_errors

	
Flake8NbApplication.report_errors() → None

	Report all the errors found by flake8 3.0.

This also updates the result_count attribute with the total
number of errors, warnings, and other messages found.

 report_statistics

report_statistics

	
Flake8NbApplication.report_statistics() → None

	Aggregate and report statistics from this run.

 run

run

	
Flake8NbApplication.run(argv: Sequence[str]) → None

	Run our application.

This method will also handle KeyboardInterrupt exceptions for the
entirety of the flake8 application. If it sees a KeyboardInterrupt it
will forcibly clean up the Manager.

 run_checks

run_checks

	
Flake8NbApplication.run_checks() → None

	Run the actual checks with the FileChecker Manager.

This method encapsulates the logic to make a
Manger instance run the checks it is
managing.

 set_flake8_option

set_flake8_option

	
Flake8NbApplication.set_flake8_option(long_option_name: str, *args: Any, **kwargs: Any) → None

	Overwrite flake8 options.

First deletes and than reads an option to flake8’s cli options, if it was present.
If the option wasn’t present, it just adds it.

	Parameters:

	
	long_option_name (str) – Long name of the flake8 cli option.

	args (Tuple[Any]) – Arbitrary args

	kwargs (Dict[str, Any]) – Arbitrary kwargs

 formatter

formatter

Module containing the report formatter.

This also includes the code to map parsed error back to the
original notebook and the cell the code in.

Functions

Summary

	map_notebook_error

	Map the violation caused in an intermediate file back to its cause.

Classes

Summary

	IpynbFormatter

	Default flake8_nb formatter for jupyter notebooks.

 map_notebook_error

map_notebook_error

	
map_notebook_error(violation: Violation, format_str: str) → tuple[str, int] | None

	Map the violation caused in an intermediate file back to its cause.

The cause is resolved as the notebook, the input cell and
the respective line number in that cell.

	Parameters:

	
	violation (Violation) – Reported violation from checking the parsed notebook

	format_str (str) – Format string used to format the notebook path and cell reporting.

	Returns:

	(filename, input_cell_line_number)
filename being the name of the original notebook and
the input cell were the violation was reported.
input_cell_line_number line number in the input cell
were the violation was reported.

	Return type:

	tuple[str, int] | None

 IpynbFormatter

IpynbFormatter

	
class IpynbFormatter(options: Namespace)

	Default flake8_nb formatter for jupyter notebooks.

If the file to be formatted is a *.py file,
it uses flake8’s default formatter.

Initialize with the options parsed from config and cli.

This also calls a hook, after_init(), so subclasses do not need
to call super to call this method.

	Parameters:

	options – User specified configuration parsed from both configuration files
and the command-line interface.

Attributes Summary

	error_format

	

Methods Summary

	after_init

	Check for a custom format string.

	beginning

	Notify the formatter that we're starting to process a file.

	finished

	Notify the formatter that we've finished processing a file.

	format

	Format the error detected by a flake8 checker.

	handle

	Handle an error reported by Flake8.

	show_benchmarks

	Format and print the benchmarks.

	show_source

	Show the physical line generating the error.

	show_statistics

	Format and print the statistics.

	start

	Prepare the formatter to receive input.

	stop

	Clean up after reporting is finished.

	write

	Write the line either to the output file or stdout.

Methods Documentation

	
after_init() → None

	Check for a custom format string.

	
beginning(filename: str) → None

	Notify the formatter that we’re starting to process a file.

	Parameters:

	filename – The name of the file that Flake8 is beginning to report results
from.

	
finished(filename: str) → None

	Notify the formatter that we’ve finished processing a file.

	Parameters:

	filename – The name of the file that Flake8 has finished reporting results
from.

	
format(violation: Violation) → str | None

	Format the error detected by a flake8 checker.

Depending on if the violation was caused by a *.py file
or by a parsed notebook.

	Parameters:

	violation (Violation) – Error a checker reported.

	Returns:

	Formatted error message, which will be displayed
in the terminal.

	Return type:

	str | None

	
handle(error: Violation) → None

	Handle an error reported by Flake8.

This defaults to calling format(), show_source(), and
then write(). To extend how errors are handled, override this
method.

	Parameters:

	error – This will be an instance of
Violation.

	
show_benchmarks(benchmarks: List[Tuple[str, float]]) → None

	Format and print the benchmarks.

	
show_source(error: Violation) → str | None

	Show the physical line generating the error.

This also adds an indicator for the particular part of the line that
is reported as generating the problem.

	Parameters:

	error – This will be an instance of
Violation.

	Returns:

	The formatted error string if the user wants to show the source.
If the user does not want to show the source, this will return
None.

	
show_statistics(statistics: Statistics) → None

	Format and print the statistics.

	
start() → None

	Prepare the formatter to receive input.

This defaults to initializing output_fd if filename

	
stop() → None

	Clean up after reporting is finished.

	
write(line: str | None, source: str | None) → None

	Write the line either to the output file or stdout.

This handles deciding whether to write to a file or print to standard
out for subclasses. Override this if you want behaviour that differs
from the default.

	Parameters:

	
	line – The formatted string to print or write.

	source – The source code that has been formatted and associated with the
line of output.

 after_init

after_init

	
IpynbFormatter.after_init() → None

	Check for a custom format string.

 beginning

beginning

	
IpynbFormatter.beginning(filename: str) → None

	Notify the formatter that we’re starting to process a file.

	Parameters:

	filename – The name of the file that Flake8 is beginning to report results
from.

 finished

finished

	
IpynbFormatter.finished(filename: str) → None

	Notify the formatter that we’ve finished processing a file.

	Parameters:

	filename – The name of the file that Flake8 has finished reporting results
from.

 format

format

	
IpynbFormatter.format(violation: Violation) → str | None

	Format the error detected by a flake8 checker.

Depending on if the violation was caused by a *.py file
or by a parsed notebook.

	Parameters:

	violation (Violation) – Error a checker reported.

	Returns:

	Formatted error message, which will be displayed
in the terminal.

	Return type:

	str | None

 handle

handle

	
IpynbFormatter.handle(error: Violation) → None

	Handle an error reported by Flake8.

This defaults to calling format(), show_source(), and
then write(). To extend how errors are handled, override this
method.

	Parameters:

	error – This will be an instance of
Violation.

 show_benchmarks

show_benchmarks

	
IpynbFormatter.show_benchmarks(benchmarks: List[Tuple[str, float]]) → None

	Format and print the benchmarks.

 show_source

show_source

	
IpynbFormatter.show_source(error: Violation) → str | None

	Show the physical line generating the error.

This also adds an indicator for the particular part of the line that
is reported as generating the problem.

	Parameters:

	error – This will be an instance of
Violation.

	Returns:

	The formatted error string if the user wants to show the source.
If the user does not want to show the source, this will return
None.

 show_statistics

show_statistics

	
IpynbFormatter.show_statistics(statistics: Statistics) → None

	Format and print the statistics.

 start

start

	
IpynbFormatter.start() → None

	Prepare the formatter to receive input.

This defaults to initializing output_fd if filename

 stop

stop

	
IpynbFormatter.stop() → None

	Clean up after reporting is finished.

 write

write

	
IpynbFormatter.write(line: str | None, source: str | None) → None

	Write the line either to the output file or stdout.

This handles deciding whether to write to a file or print to standard
out for subclasses. Override this if you want behaviour that differs
from the default.

	Parameters:

	
	line – The formatted string to print or write.

	source – The source code that has been formatted and associated with the
line of output.

 parsers

parsers

Package responsible for transforming notebooks to valid python files.

Modules

	flake8_nb.parsers.cell_parsers

	Module containing parsers for notebook cells.

	flake8_nb.parsers.notebook_parsers

	Module for parsing whole jupyter notebooks.

Classes

Summary

	CellId

	Container to hold information to identify a cell.

 cell_parsers

cell_parsers

Module containing parsers for notebook cells.

This also includes parsers for the cell and inline tags.
It heavily utilizes the mutability of lists.

Functions

Summary

	extract_flake8_inline_tags

	Extract flake8-tags which were used as comment in a cell.

	extract_flake8_tags

	Extract all tag that start with 'flake8-noqa-' from a cell.

	extract_inline_flake8_noqa

	Extract flake8 noqa rules from normal flake8 comments .

	flake8_tag_to_rules_dict

	Parse a flake8 tag to a rules_dict.

	generate_rules_list

	Generate a List of rules from rules_dict.

	get_flake8_rules_dict

	Parse all flake8 tags of a cell to a rules_dict.

	notebook_cell_to_intermediate_dict

	Parse notebook_cell to a dict.

	update_inline_flake8_noqa

	Update source_line with flake8 noqa comments.

	update_rules_dict

	Update the rules dict total_rules_dict with new_rules_dict.

Exceptions

Exception Summary

	InvalidFlake8TagWarning

	Warning thrown when a tag is badly formatted.

 extract_flake8_inline_tags

extract_flake8_inline_tags

	
extract_flake8_inline_tags(notebook_cell: NotebookCell) → list[str]

	Extract flake8-tags which were used as comment in a cell.

	Parameters:

	notebook_cell (NotebookCell) – Dict representation of a notebook cell as parsed from JSON.

	Returns:

	List of all inline tags in the given cell,
which matched FLAKE8_INLINE_TAG_PATTERN.

	Return type:

	list[str]

 extract_flake8_tags

extract_flake8_tags

	
extract_flake8_tags(notebook_cell: NotebookCell) → list[str]

	Extract all tag that start with ‘flake8-noqa-’ from a cell.

	Parameters:

	notebook_cell (NotebookCell) – Dict representation of a notebook cell as parsed from JSON.

	Returns:

	List of all tags in the given cell, which started with ‘flake8-noqa-‘.

	Return type:

	list[str]

 extract_inline_flake8_noqa

extract_inline_flake8_noqa

	
extract_inline_flake8_noqa(source_line: str) → list[str]

	Extract flake8 noqa rules from normal flake8 comments .

	Parameters:

	source_line (str) – Single line of sourcecode from a cell.

	Returns:

	List of flake8 rules.

	Return type:

	list[str]

 flake8_tag_to_rules_dict

flake8_tag_to_rules_dict

	
flake8_tag_to_rules_dict(flake8_tag: str) → Dict[str, List[str]]

	Parse a flake8 tag to a rules_dict.

rules_dict contains lists of rules, depending on if the
tag is a cell or a line tag.

	Parameters:

	flake8_tag (str) – String of a flake8-tag.

	Returns:

	Dict with cell and line rules. Line rules have the line number
as key and cell rules have ‘cell as key’.

	Return type:

	RulesDict

See also

get_flake8_rules_dict

 generate_rules_list

generate_rules_list

	
generate_rules_list(source_index: int, rules_dict: RulesDict) → list[str]

	Generate a List of rules from rules_dict.

This list should be applied to the line at source_index.

	Parameters:

	
	source_index (int) – Index of the source code line.

	rules_dict (RulesDict) – Dict containing lists of rules, depending on if the tag is a
cell or a line tag.

	Returns:

	List of rules which should be applied to the line at source_index.

	Return type:

	list[str]

See also

flake8_tag_to_rules_dict, get_flake8_rules_dict

 get_flake8_rules_dict

get_flake8_rules_dict

	
get_flake8_rules_dict(notebook_cell: Dict[str, Any]) → Dict[str, List[str]]

	Parse all flake8 tags of a cell to a rules_dict.

rules_dict contains lists of rules, depending on if the
tag is a cell or a line tag.

	Parameters:

	notebook_cell (NotebookCell) – Dict representation of a notebook cell as parsed from JSON.

	Returns:

	Dict with all cell and line rules. Line rules have the line number
as key and cell rules have ‘cell as key’.

	Return type:

	RulesDict

See also

flake8_tag_to_rules_dict, update_rules_dict

 notebook_cell_to_intermediate_dict

notebook_cell_to_intermediate_dict

	
notebook_cell_to_intermediate_dict(notebook_cell: NotebookCell) → dict[str, CellId | str | int]

	Parse notebook_cell to a dict.

That dict can later be written to a intermediate_py_file.

	Parameters:

	notebook_cell (NotebookCell) – Dict representation of a notebook cell as parsed from JSON.

	Returns:

	Dict which has the keys ‘code’, ‘input_name’ and ‘code’.
code,``input_name`` is a str of the code cells In[\d*] name and lines_of_code
is the number of lines of corresponding parsed parsed notebook cell.

	Return type:

	dict[str, CellId | str | int]

See also

update_inline_flake8_noqa, flake8_nb.parsers.notebook_parsers.create_intermediate_py_file

 update_inline_flake8_noqa

update_inline_flake8_noqa

	
update_inline_flake8_noqa(source_line: str, rules_list: list[str]) → str

	Update source_line with flake8 noqa comments.

This is done extraction flake8-tags as well as inline flake8
comments.

	Parameters:

	
	source_line (str) – Single line of sourcecode from a cell.

	rules_list (list[str]) – List of rules which should be applied to source_line.

	Returns:

	source_line with flake8 noqa comments.

	Return type:

	str

See also

generate_rules_list

 update_rules_dict

update_rules_dict

	
update_rules_dict(total_rules_dict: Dict[str, List[str]], new_rules_dict: Dict[str, List[str]]) → None

	Update the rules dict total_rules_dict with new_rules_dict.

If any entry of a key is ‘noqa’ (ignore all), the rules will be
set to be only ‘noqa’.

	Parameters:

	
	total_rules_dict (RulesDict) – rules_dict which should be updated.

	new_rules_dict (RulesDict) – rules_dict which should be used to update total_rules_dict.

See also

flake8_tag_to_rules_dict, get_flake8_rules_dict

 InvalidFlake8TagWarning

InvalidFlake8TagWarning

	
exception InvalidFlake8TagWarning(flake8_tag: str)

	Warning thrown when a tag is badly formatted.

When a cell tag starts with ‘flake8-noqa-’ but doesn’t
match the correct pattern needed for cell tags.
This is used to show users that they have a typo in their tags.

Create InvalidFlake8TagWarning.

	Parameters:

	flake8_tag (str) – Used improperly formatted flake8-nb tag

 notebook_parsers

notebook_parsers

Module for parsing whole jupyter notebooks.

This utilizes flake8_nb.parser.cell_parsers.

Functions

Summary

	convert_source_line

	Transform jupyter magic commands to valid python code.

	create_intermediate_py_file

	Parse a notebook at notebook_path and saves a parsed version.

	create_temp_path

	Create the path for a parsed jupyter notebook.

	get_notebook_code_cells

	Parse a notebook and returns a Tuple.

	get_rel_paths

	Transform file_paths in a list of paths relative to base_path.

	ignore_cell

	Return True if the cell isn't a code cell or is empty.

	is_parent_dir

	Check if a given dir parent_dir is parent directory of path.

	map_intermediate_to_input

	Map intermediate file lines to notebook cell and line.

	read_notebook_to_cells

	Parse the notebook at notebook_path as Json and returns a list of notebook cells.

Classes

Summary

	NotebookParser

	Main parsing class for notebooks.

Exceptions

Exception Summary

	InvalidNotebookWarning

	Warning that is given when a jupyter notebook can't be parsed as JSON.

 convert_source_line

convert_source_line

	
convert_source_line(source_line: str) → str

	Transform jupyter magic commands to valid python code.

This utilizes nbconvert.filters.ipython2python.

	Parameters:

	source_line (str) – Single line of source code.

	Returns:

	Valid python code, as string, even if it was a jupyter magic line.

	Return type:

	str

 create_intermediate_py_file

create_intermediate_py_file

	
create_intermediate_py_file(notebook_path: str, intermediate_dir_base_path: str) → tuple[str, InputLineMapping]

	Parse a notebook at notebook_path and saves a parsed version.

The corresponding position is relative to intermediate_dir_base_path.

	Parameters:

	
	notebook_path (str) – Path to a notebook.

	intermediate_dir_base_path (str) – Path pointing to the position the parsed notebook
will be saved to.

	Returns:

	(intermediate_file_path, input_line_mapping) Where
intermediate_file_path is the path the parsed notebook
was written to. If there was an error parsing the file
the intermediate_file_path will be "".
input_line_mapping is a dict which has the keys
‘input_names’ and ‘code_lines’. code_lines is a List
of the code cells In[\d*] names and code_lines
is the corresponding line in the parsed notebook.

	Return type:

	tuple[str, InputLineMapping]

See also

read_notebook_to_cells, get_notebook_code_cells, create_temp_path

	Warns:

	InvalidNotebookWarning – If the notebook couldn’t be parsed.

 create_temp_path

create_temp_path

	
create_temp_path(notebook_path: str, temp_base_path: str) → str

	Create the path for a parsed jupyter notebook.

The path has the same relative position to temp_base_path as
notebook_path has to os.curdir. If that would lead out
of the temp_base_path, the path will point to a file
at the root of temp_base_path, which has the same filename
as the file at notebook_path has.

	Parameters:

	
	notebook_path (str) – Path to a notebook.

	temp_base_path (str) – Base path of a temporary folder, the new path should have the
same relative position to as notebook_path has to os.curdir

	Returns:

	Path to the temporary file which should be created.

	Return type:

	str

 get_notebook_code_cells

get_notebook_code_cells

	
get_notebook_code_cells(notebook_path: str) → tuple[bool, list[NotebookCell]]

	Parse a notebook and returns a Tuple.

The first entry being a bool which indicates if juypter magic was
used and the second entry is a List of all code cells, as their dict
representation.

	Parameters:

	notebook_path (str) – Path to a notebook.

	Returns:

	(uses_get_ipython, notebook_cells), where uses_get_ipython
is a bool, which is True if any cell contained jupyter magic and
notebook_cells is a List of all code cells dict representation.

	Return type:

	tuple[bool, list[NotebookCell]]

See also

read_notebook_to_cells

	Warns:

	InvalidNotebookWarning – If the notebook couldn’t be parsed.

 get_rel_paths

get_rel_paths

	
get_rel_paths(file_paths: list[str], base_path: str) → list[str]

	Transform file_paths in a list of paths relative to base_path.

	Parameters:

	
	file_paths (list[str]) – List of file paths.

	base_path (str) – Path file_paths should be relative to.

	Returns:

	List of file_paths relative to base_path

	Return type:

	list[str]

 ignore_cell

ignore_cell

	
ignore_cell(notebook_cell: Dict[str, Any]) → bool

	Return True if the cell isn’t a code cell or is empty.

	Parameters:

	notebook_cell (NotebookCell) – Dict representation of a notebook cell as parsed from JSON.

	Returns:

	Whether cell should be ignored or not.

	Return type:

	bool

 is_parent_dir

is_parent_dir

	
is_parent_dir(parent_dir: str, path: str) → bool

	Check if a given dir parent_dir is parent directory of path.

	Parameters:

	
	parent_dir (str) – Path to the directory, which should be checked if it is a
parent directory of path.

	path (str) – Path to a file or directory, which should be checked if
it is inside of parent_dir..

	Returns:

	Weather or not ‘path’ is inside of ‘parent_dir’.

	Return type:

	bool

 map_intermediate_to_input

map_intermediate_to_input

	
map_intermediate_to_input(input_line_mapping: InputLineMapping, line_number: int) → tuple[CellId, int]

	Map intermediate file lines to notebook cell and line.

Maps the line at line_number to the corresponding code cell
(input_cell_name) and line number in the code cell
(input_cell_line_number)

	Parameters:

	
	input_line_mapping (InputLineMapping) – Dict containing lists of input cell names and their line in the
intermediate file.

	line_number (int) – Line in the intermediate py file.

	Returns:

	Input cell ID and corresponding line in that cell
(input_id, input_cell_line_number)

	Return type:

	tuple[CellId, int]

See also

create_intermediate_py_file

 read_notebook_to_cells

read_notebook_to_cells

	
read_notebook_to_cells(notebook_path: str) → list[NotebookCell]

	Parse the notebook at notebook_path as Json and returns a list of notebook cells.

	Parameters:

	notebook_path (str) – Path to a notebook.

	Returns:

	List of notebook cells if the notebook was parsed successfully or
an empty list if the *.ipynb file couldn’t be parsed.

	Return type:

	list[NotebookCell]

	Warns:

	InvalidNotebookWarning – If the notebook couldn’t be parsed.

 NotebookParser

NotebookParser

	
class NotebookParser(original_notebook_paths: list[str] | None = None)

	Main parsing class for notebooks.

NotebookParser utilizes that instance and class attributes
are separated and class attributes allow sharing of information
across instances. This is used to realize the mapping of checked
parsed notebooks back to their original files.

Initialize NotebookParser.

Initializing an instance of the class will save original_notebook_paths,
which is a List of paths to notebooks, to the class attributes, which can be
accessed by all instances or all modules that know about the class.
If original_notebook_paths isn’t provided, the class attributes will stay
as it was.

	Parameters:

	original_notebook_paths (List[str], optional) – List of paths to notebooks, by default None

Attributes Summary

	input_line_mappings

	List of input_line_mapping

	intermediate_py_file_paths

	List of paths to the parsed Notebooks

	original_notebook_paths

	List of paths to the original Notebooks

	temp_path

	Path of the temp folder the parsed notebooks were saved in

Methods Summary

	clean_up

	Delete the created temporary directory if it exists and resets all class attributes.

	create_intermediate_py_file_paths

	Create intermediate files needed for analysis.

	get_mappings

	Return the mapping information needed to generate error messages.

Methods Documentation

	
static clean_up() → None

	Delete the created temporary directory if it exists and resets all class attributes.

	
create_intermediate_py_file_paths() → None

	Create intermediate files needed for analysis.

Parses all notebooks provided by self.original_notebook_paths
and saves them to a temporary directory, if original_notebook_paths,
was provided at initialization.

	
static get_mappings() → Iterator[tuple[str, str, InputLineMapping]]

	Return the mapping information needed to generate error messages.

The message corresponds to the original notebook and not the actually checked
parsed one.

	Returns:

	(original_notebook_paths,
intermediate_py_file_paths,
input_line_mappings)
original_notebook_paths is the relative path of the tested notebook.
intermediate_py_file_paths is the absolute path of the checked notebook.
And input_line_mapping is a dict of information about which input in
the original notebook, is in what line in the corresponding pared notebook.

	Return type:

	Iterator[tuple[str, str, InputLineMapping]]

See also

input_line_mapping, create_intermediate_py_file

 clean_up

clean_up

	
static NotebookParser.clean_up() → None

	Delete the created temporary directory if it exists and resets all class attributes.

 create_intermediate_py_file_paths

create_intermediate_py_file_paths

	
NotebookParser.create_intermediate_py_file_paths() → None

	Create intermediate files needed for analysis.

Parses all notebooks provided by self.original_notebook_paths
and saves them to a temporary directory, if original_notebook_paths,
was provided at initialization.

 get_mappings

get_mappings

	
static NotebookParser.get_mappings() → Iterator[tuple[str, str, InputLineMapping]]

	Return the mapping information needed to generate error messages.

The message corresponds to the original notebook and not the actually checked
parsed one.

	Returns:

	(original_notebook_paths,
intermediate_py_file_paths,
input_line_mappings)
original_notebook_paths is the relative path of the tested notebook.
intermediate_py_file_paths is the absolute path of the checked notebook.
And input_line_mapping is a dict of information about which input in
the original notebook, is in what line in the corresponding pared notebook.

	Return type:

	Iterator[tuple[str, str, InputLineMapping]]

See also

input_line_mapping, create_intermediate_py_file

 InvalidNotebookWarning

InvalidNotebookWarning

	
exception InvalidNotebookWarning(notebook_path: str)

	Warning that is given when a jupyter notebook can’t be parsed as JSON.

Initialize InvalidNotebookWarning.

	Parameters:

	notebook_path (str) – Path to a notebook

 CellId

CellId

	
class CellId(input_nr: str, code_cell_nr: int, total_cell_nr: int)

	Container to hold information to identify a cell.

The information are:
* input_nr

Execution count, ” ” for not executed cells

	
	code_cell_nr
	Count of the code cell starting at 1, ignoring raw and markdown cells

	
	total_cell_nr
	Total count of the cell starting at 1, considering raw and markdown cells.

Create new instance of CellId(input_nr, code_cell_nr, total_cell_nr)

Attributes Summary

	code_cell_nr

	Alias for field number 1

	input_nr

	Alias for field number 0

	total_cell_nr

	Alias for field number 2

Methods Summary

	count

	Return number of occurrences of value.

	index

	Return first index of value.

Methods Documentation

	
count(value, /)

	Return number of occurrences of value.

	
index(value, start=0, stop=9223372036854775807, /)

	Return first index of value.

Raises ValueError if the value is not present.

 count

count

	
CellId.count(value, /)

	Return number of occurrences of value.

 index

index

	
CellId.index(value, start=0, stop=9223372036854775807, /)

	Return first index of value.

Raises ValueError if the value is not present.

 save_cast_int

save_cast_int

	
save_cast_int(int_str: str) → int

	Cast version string to tuple, in a save manner.

This is needed so the version number of prereleases (i.e. 3.8.0rc1)
don’t not throw exceptions.

	Parameters:

	int_str (str) – String which should represent a number.

	Returns:

	Int representation of int_str

	Return type:

	int

 Contributing

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/s-weigand/flake8-nb/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

flake8-nb could always use more documentation, whether as part of the
official flake8-nb docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/s-weigand/flake8-nb/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up flake8_nb for local development.

	Fork the flake8_nb repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/flake8_nb.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed,
this is how you set up your fork for local development:

$ mkvirtualenv flake8_nb
$ cd flake8_nb/
$ pip install -r requirements_dev.txt
$ pip install -e .

	Install the pre-commit hooks, for quality assurance:

$ pre-commit install

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.7, 3.8, 3.9 and 3.10. Check
https://github.com/s-weigand/flake8-nb/actions
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ pytest tests.test_flake8_nb

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

 Credits

Credits

Many thanks go to the creators and contributors of flake8 [https://github.com/pycqa/flake8].
Which inspired me to write this hack on top of it and supplies nearly all
of the functionality.

This packages skeleton was created with Cookiecutter [https://github.com/cookiecutter/cookiecutter] and the
audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

The idea to use cell tags was inspired by the use of cell tags in nbval [https://github.com/computationalmodelling/nbval].

 Changelog

Changelog

0.5.3 (2023-03-28)

	✨ Official python 3.11 support #291 [https://github.com/s-weigand/flake8-nb/pull/291]

	🩹 Fixed bug with pre-commit-ci due to read-only filesystem by @lkeegan in #290 [https://github.com/s-weigand/flake8-nb/pull/290]

0.5.2 (2022-08-17)

	🩹 Fix config file discovery with flake8>=5.0.0 #255 [https://github.com/s-weigand/flake8-nb/pull/255]

0.5.1 (2022-08-16)

	🩹 Fix config discovery with flake8>=5.0.0 #251 [https://github.com/s-weigand/flake8-nb/pull/251]

0.5.0 (2022-08-15)

	Drop support for flake8<3.8.0 #240 [https://github.com/s-weigand/flake8-nb/pull/240]

	Set max supported version of flake8 to be <5.0.5 #240 [https://github.com/s-weigand/flake8-nb/pull/240]

	Enable calling flake8_nb as python module #240 [https://github.com/s-weigand/flake8-nb/pull/240]

0.4.0 (2022-02-21)

	Drop official python 3.6 support

0.3.1 (2021-10-19)

	Set max supported version of flake8 to be <4.0.2

	Added official Python 3.10 support and tests

0.3.0 (2020-05-16)

	Set max supported version of flake8 to be <3.9.3

	Report formatting is configurable via --notebook-cell-format option
with formatting options nb_path, exec_count, code_cell_count and total_cell_count.

0.2.7 (2020-04-16)

	Set max supported version of flake8 to be <3.9.2

0.2.6 (2020-03-21)

	Set max supported version of flake8 to be <3.9.1

0.2.5 (2020-10-06)

	Added official Python 3.9 support and tests

0.2.4 (2020-10-04)

	Set max supported version of flake8 to be <3.8.5

0.2.3 (2020-10-02)

	Fixed pre-commit hook file association so it support python and juypter notebooks

0.2.1 (2020-08-11)

	Forced uft8 encoding when reading notebooks,
this prevents errors on windows when console codepage is assumed

0.2.0 (2020-07-18)

	Added pre-commit hook (#47 [https://github.com/s-weigand/flake8-nb/pull/47])

0.1.8 (2020-06-09)

	Set max supported version of flake8 to be <=3.8.3

0.1.7 (2020-05-25)

	Set max supported version of flake8 to be <=3.8.2

0.1.6 (2020-05-20)

	Set max supported version of flake8 to be <=3.8.1

	Fixed bug with --exclude option

0.1.4 (2020-01-01)

	Set max supported version of flake8 to be <3.8.0, to prevent breaking due to changes of flake8’s inner workings.

0.1.3 (2019-11-13)

	Added official Python 3.8 support and tests

0.1.2 (2019-10-29)

	Fixed compatibility with flake8==3.7.9

0.1.1 (2019-10-24)

	Added console-script ‘flake8-nb’ as an alias for ‘flake8_nb’

0.1.0 (2019-10-22)

	First release on PyPI.

 Python Module Index

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 flake8_nb	

 	
 	
 flake8_nb.flake8_integration	

 	
 	
 flake8_nb.flake8_integration.cli	

 	
 	
 flake8_nb.flake8_integration.formatter	

 	
 	
 flake8_nb.parsers	

 	
 	
 flake8_nb.parsers.cell_parsers	

 	
 	
 flake8_nb.parsers.notebook_parsers	

 Index

Index

 A
 | B
 | C
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | P
 | R
 | S
 | U
 | W

A

 	
 	after_init() (IpynbFormatter method)

 	
 	apply_hacks() (Flake8NbApplication method)

B

 	
 	beginning() (IpynbFormatter method)

C

 	
 	CellId (class in flake8_nb.parsers)

 	clean_up() (NotebookParser static method)

 	convert_source_line() (in module flake8_nb.parsers.notebook_parsers)

 	
 	count() (CellId method)

 	create_intermediate_py_file() (in module flake8_nb.parsers.notebook_parsers)

 	create_intermediate_py_file_paths() (NotebookParser method)

 	create_temp_path() (in module flake8_nb.parsers.notebook_parsers)

E

 	
 	exit() (Flake8NbApplication method)

 	exit_code() (Flake8NbApplication method)

 	
 	extract_flake8_inline_tags() (in module flake8_nb.parsers.cell_parsers)

 	extract_flake8_tags() (in module flake8_nb.parsers.cell_parsers)

 	extract_inline_flake8_noqa() (in module flake8_nb.parsers.cell_parsers)

F

 	
 	find_plugins() (Flake8NbApplication method)

 	finished() (IpynbFormatter method)

 	
 flake8_nb

 	module

 	
 flake8_nb.flake8_integration

 	module

 	
 flake8_nb.flake8_integration.cli

 	module

 	
 flake8_nb.flake8_integration.formatter

 	module

 	
 	
 flake8_nb.parsers

 	module

 	
 flake8_nb.parsers.cell_parsers

 	module

 	
 flake8_nb.parsers.notebook_parsers

 	module

 	flake8_tag_to_rules_dict() (in module flake8_nb.parsers.cell_parsers)

 	Flake8NbApplication (class in flake8_nb.flake8_integration.cli)

 	format() (IpynbFormatter method)

G

 	
 	generate_rules_list() (in module flake8_nb.parsers.cell_parsers)

 	get_flake8_rules_dict() (in module flake8_nb.parsers.cell_parsers)

 	get_mappings() (NotebookParser static method)

 	
 	get_notebook_code_cells() (in module flake8_nb.parsers.notebook_parsers)

 	get_notebooks_from_args() (in module flake8_nb.flake8_integration.cli)

 	get_rel_paths() (in module flake8_nb.parsers.notebook_parsers)

H

 	
 	hack_args() (Flake8NbApplication static method)

 	hack_config_module() (in module flake8_nb.flake8_integration.cli)

 	hack_flake8_program_and_version() (Flake8NbApplication method)

 	
 	hack_option_manager_generate_versions() (in module flake8_nb.flake8_integration.cli)

 	hack_options() (Flake8NbApplication method)

 	hacked_register_plugin_options() (Flake8NbApplication method)

 	handle() (IpynbFormatter method)

I

 	
 	ignore_cell() (in module flake8_nb.parsers.notebook_parsers)

 	index() (CellId method)

 	initialize() (Flake8NbApplication method)

 	
 	InvalidFlake8TagWarning

 	InvalidNotebookWarning

 	IpynbFormatter (class in flake8_nb.flake8_integration.formatter)

 	is_parent_dir() (in module flake8_nb.parsers.notebook_parsers)

M

 	
 	make_file_checker_manager() (Flake8NbApplication method)

 	make_formatter() (Flake8NbApplication method)

 	make_guide() (Flake8NbApplication method)

 	map_intermediate_to_input() (in module flake8_nb.parsers.notebook_parsers)

 	map_notebook_error() (in module flake8_nb.flake8_integration.formatter)

 	
 module

 	flake8_nb

 	flake8_nb.flake8_integration

 	flake8_nb.flake8_integration.cli

 	flake8_nb.flake8_integration.formatter

 	flake8_nb.parsers

 	flake8_nb.parsers.cell_parsers

 	flake8_nb.parsers.notebook_parsers

N

 	
 	notebook_cell_to_intermediate_dict() (in module flake8_nb.parsers.cell_parsers)

 	
 	NotebookParser (class in flake8_nb.parsers.notebook_parsers)

P

 	
 	parse_configuration_and_cli() (Flake8NbApplication method)

 	
 	parse_configuration_and_cli_legacy() (Flake8NbApplication method)

 	parse_preliminary_options() (Flake8NbApplication method)

R

 	
 	read_notebook_to_cells() (in module flake8_nb.parsers.notebook_parsers)

 	register_plugin_options() (Flake8NbApplication method)

 	report() (Flake8NbApplication method)

 	report_benchmarks() (Flake8NbApplication method)

 	
 	report_errors() (Flake8NbApplication method)

 	report_statistics() (Flake8NbApplication method)

 	run() (Flake8NbApplication method)

 	run_checks() (Flake8NbApplication method)

S

 	
 	save_cast_int() (in module flake8_nb)

 	set_flake8_option() (Flake8NbApplication method)

 	show_benchmarks() (IpynbFormatter method)

 	
 	show_source() (IpynbFormatter method)

 	show_statistics() (IpynbFormatter method)

 	start() (IpynbFormatter method)

 	stop() (IpynbFormatter method)

U

 	
 	update_inline_flake8_noqa() (in module flake8_nb.parsers.cell_parsers)

 	
 	update_rules_dict() (in module flake8_nb.parsers.cell_parsers)

W

 	
 	write() (IpynbFormatter method)

nav.xhtml

 Table of Contents

 		
 Welcome to flake8-nb’s documentation!

 		
 flake8-nb

 		
 Features

 		
 Examples

 		
 Default reporting

 		
 Execution count

 		
 Custom reporting

 		
 Code cell count

 		
 Total cell count

 		
 Similar projects

 		
 Contributors ✨

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Command line usage

 		
 Project wide configuration

 		
 Per cell/line configuration

 		
 flake8 noqa comments

 		
 Cell tags

 		
 Inline cell tags

 		
 As pre-commit hook

 		
 Examples

 		
 This notebook demonstrates flake8_nb reporting

 		
 Report using execution count

 		
 Report using code cell count

 		
 Report using total cell count

 		
 This notebook demonstrates flake8_nb reporting with flake8-tags

 		
 Testing Celltags

 		
 Testing inline Celltags

 		
 Testing normal flake8 noqa comments

 		
 Report using execution count

 		
 Report using code cell count

 		
 Report using total cell count

 		
 Inner workings

 		
 flake8_nb

 		
 flake8_integration

 		
 parsers

 		
 Functions

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Changelog

 		
 0.5.3 (2023-03-28)

 		
 0.5.2 (2022-08-17)

 		
 0.5.1 (2022-08-16)

 		
 0.5.0 (2022-08-15)

 		
 0.4.0 (2022-02-21)

 		
 0.3.1 (2021-10-19)

 		
 0.3.0 (2020-05-16)

 		
 0.2.7 (2020-04-16)

 		
 0.2.6 (2020-03-21)

 		
 0.2.5 (2020-10-06)

 		
 0.2.4 (2020-10-04)

 		
 0.2.3 (2020-10-02)

 		
 0.2.1 (2020-08-11)

 		
 0.2.0 (2020-07-18)

 		
 0.1.8 (2020-06-09)

 		
 0.1.7 (2020-05-25)

 		
 0.1.6 (2020-05-20)

 		
 0.1.4 (2020-01-01)

 		
 0.1.3 (2019-